
NFS, Linux, and clusters:
Network storage and its

future

Brian Pawlowski
beepy@netapp.com
Trond Myklebust

trond.myklebust@fys.uio.no

This paper is a draft position paper and
and work in progress for an invited talk
to the SANE 2004 Conference in
Amsterdam.

This paper explores requirements and
approaches to storage in a Linux cluster
environment, and discusses specific
features NFS Version 4 that make it well
suited for use in a cluster computing
network. While this paper primarily
concerns itself with NFS, alternatives
will be briefly described. The paper ends
by touching on some future directions for
NFS in cluster applications.

Introduction

The Network File System (NFS) has been
in existence for 20 years and provides the
underlying distributed file system
architecture for most networked Unix
inspired operating systems today. NFS was
first deployed in SunOS and later ported to
or re-implemented in other operating
systems to provide remote file access. NFS
has always been easy to implement and
easy to deploy due in part to its lean design
and simplified error recovery mechanisms.
[Sandberg85]

In the 1990’s, as networking speeds
increased to match traditional storage
interconnect speeds, the concept of
Network Attached Storage (NAS) as an
alternative to Direct Attach Storage
(DAS) or SCSI-based Storage Area
Networks (SAN) took hold. A NAS

storage architecture was typified by the
use of standard TCP/IP and Ethernet as
the data transport. In contrast to Fibre
Channel-based SANs, NAS deployments
were (and are) perceived to provide more
cost-effective solutions to networking
storage. Regardless of how storage is
networked, releasing captured DAS
storage allows interesting solutions to
problems of backup and disaster
recovery leveraging the network. Typical
applications included shared home
directories, software development and
engineering applications. In roads were
made in hosting more traditional
enterprise applications, like database,
over NFS. NFS evolved slowly to meet
increasing requirements for performance
and data access during this time.
[Pawlowski94]

The emergence of large scale compute
clusters, first using BSD Unix and later
Linux on top of commodity Intel x86
compatible hardware, put NFS into an
increasingly important role in large, cost-
effective, scalable storage deployments
for clustered applications. Scalable e-
mail architectures and web service farms
led the charge. Inherently partitionable
applications that arise in CAD design and
simulation, animation and special effects
rendering were also well suited for a
scalable compute farm attack. Reducing
the cost of application deployment using
commodity compute hardware
horizontally scaled was the driver.

We now live in interesting times, and
much of the interest lies in using things
like Linux and clustering to support cost-
effective high-performance application
deployment. A new version of NFS,
Version 4, is in the early stages of
adoption and deployment. Some of its
design features are intended to provide
better behaviour and performance for
clustered applications. [Pawlowski00]
[Adamson01]

File systems for a Linux cluster

It is useful to consider the requirements
for and the issues facing a storage
architecture and file system in a Linux
cluster environment. A brief discussion
of the goals and motivations of cluster
computing will shed some light on the
requirements on storage to support it.

The Linux compute cluster

Cluster computing arose originally from
a need to provide performance scalability
beyond the capabilities of any single
large compute node on problems
involving massively parallel tasks.
Today, as cluster computing has become
more and more mainstream it has been
seen increasingly as a way to aggregate
computing resources of commodity
computers to achieve better
price/performance compared to large
monolithic SMP application servers.

A Linux compute cluster is first and
foremost cost driven. Although compute
clusters are certainly not a new concept,
the cost-driven basis for Linux compute
clusters have implications for subsequent
storage decisions in support of the
compute farm. Cost reductions in
deploying Linux compute clusters arise
perhaps less from the “free” software
aspect of the solution and more from the
ability to exploit cheap commodity
hardware that provides good
performance.

Realistically, Linux provides additional
cost savings over other x86 platforms
enablers like FreeBSD because of the
growing infrastructure, expertise and
support options available. But FreeBSD
remains an alternative, and Sun is
investing anew in Solaris x86. Microsoft
Windows server is also seeing use in
scalable compute clusters – emphasizing
the underlying commonality of the x86

as the commodity platform of choice. As
the compute elements become
commoditized, so in turn does the
operating system. Applications drive the
compute cluster architecture and have
few if any dependencies on a particular
operating system running on a node. (It is
the case that multiple operating systems
may co-exist in a compute cluster – this
can easily arise in a rolling migration to a
new operating system platform for an
application. A Unix system is a Unix
system is a Unix system.)

The key feature of the compute nodes in
the cluster is that they are
interchangeable so that any node may
serve a portion of the clustered
application and be replaced or
redeployed in event of node or network
errors. A compute node holds no
significant state, and the cluster needs
nothing other than cursory recovery
(primarily through job reissue to another
node in the cluster after some job queue
management cleanup). The symmetry is
relatively weak. Linux compute cluster
architectures can absorb new hardware
platforms sporting enhanced capabilities
(threaded or multi-core CPUs, for
example). Differences in performance of
the individual nodes can be managed by
defining small discrete units of work and
issuing additional units (jobs) to more
capable nodes in the cluster. But from the
application viewpoint, during execution,
the compute nodes are the same.

Compute clusters are horizontally
scalable – additional processing capacity
is achieved by adding additional similar
nodes to the network.

In a cost-driven model for a compute
cluster that leverages commodity
components, the cluster interconnect or
fabric itself is a commodity. TCP/IP and
Ethernet are the cluster interconnect of
choice for Linux compute clusters.

In large Linux compute clusters, failure
is not only an option – it is a way of life.
10 – 20 compute node failures a day per
2,500 nodes is probably not uncommon.
Of those, perhaps 2 or 3 per week
represent a hard failure not cured by a
reboot. (Interestingly, hard failure rates
following initial installation of new
compute nodes due to early
mortality/DOA/marginal
components/shipping damage are
thought to run higher – as weak nodes
are culled from the herd). The obvious
candidates for failure arise (in the like
order of): disk drives, memory, and
power supplies. [Private communication]
Using “commodity” hardware results in
this trade-off of individual node
reliability and overall cluster availability
and performance. Diagnosing and
replacing disk drives and power supplies
is fairly straightforward. In driving down
the cost of the compute nodes it can be
the case that once a node suffers a
“system” hard failure (not easily
diagnosed to one of the above cases) it is
simply cheaper to replace the compute
node with a spare rather than attempt
further diagnosis and repair.

Linux compute clusters consisting of
1,000’s of nodes and their associated
storage present site issues first in
compute density (CPUs per m2 of floor
space) and then in providing sufficient
power and cooling for the cluster. Blade
architectures attempt to optimize power
and cooling requirements for a given
amount of CPU through innovative
packaging.

Linux compute clusters probably exist in
fundamentally two different forms
reflecting different applications. The
following taxonomy is probably a gross
over-simplification of application
specific cluster designs – but illustrates
that there exist wide variations in cluster
size.

In the first application type, large clusters
of 2,000, 5,000 and going to 10,000
nodes within the next two years are used
for highly partitionable applications that
can be executed in parallel threads.
[Private communication] While read
sharing occurs, writing is strictly
partitioned. Such applications include
search engines, e-mail, animation and
rendering, financial modeling, scientific
simulations and engineering applications.

Interestingly, large partitionable
applications deployed via a job queue
management tool such as the Load
Sharing Facility (LSF) do not depend on
distributed locking in the underlying file
system. In a completely partitionable
application, the unique output of each job
in a cluster is implicitly locked through
job queue scheduling. Otherwise,
application specific locking is often
deployed.

The second application type of interest
deployed on Linux compute clusters is
the scalable database. These deployments
typically involve 128 nodes or less and
have a higher degree of write sharing and
locking than the large scale, highly
partitionable applications mentioned
above. Locking is controlled by the
database application itself. Database
integrity is supported by fencing
operations and recovery techniques (that
may require feature support in the
underlying storage architecture).

Possibly a third cluster type exists in
extreme high performance computing
with I/O bandwidth requirements per
node that are not met with commodity
TCP/IP and Ethernet networking. In such
clusters, the I/O bandwidth available to
any one storage node is insufficient and
so a requirement exists for aggregating
bandwidth over several storage devices
and networks. This paper will not go into

these issues (except to touch on some
future work in NFS).

Clusters vs. Grids
The term “Grid” has become overused to
define any cluster of computers.
Distinguishing cluster computing from
Grid computing is useful in gaining
insights into the requirements for scaling
compute clusters.

Classically, Grid computing takes the
form of sets of toolkits and technologies
to construct pools of shared computing
resources. The Grid technique arose to
attempt to tie together geographically
dispersed computing centres to satisfy
the exponentially increasing demands of
scientific research. It is the
geographically dispersed aspect that most
distinguishes a classic Grid computing
architecture from simple cluster
computing. Analogies are made to “the
power grid” utility approach in defining a
similar model for computing.

Grid computing places additional
constraints on accessing shared storage.
Once outside the confines of a data
center, uniform global naming policies
for data access to allow sharing become
confounded. A fine problem arises
because what is really needed is support
for local autonomy in managing well-
defined portions (sub-trees) of a global
namespace with changes appearing to
other (geographically remote) parts of
the Grid.

There is usually a strong relationship
between well-defined “local” sub-trees in
the global name space and security
administration domains. Outside a single
data center providing secure access to
shared data suggests the use public key
authentication. The problem of remote
private key distribution is impractical in
general.

Grid computing can arise in the small
even within an organization’s internal
network. While a Linux cluster may exist
in a well-managed data center it may
well be that Linux computers exist on
user desktops, particularly in technical
enterprises. Grid computing techniques
can be used to harness unused desktop
compute cycles off hours to apply to
parallel application problems using the
same job queue management as in the
Linux cluster proper.

Fine points aside on the differences
between clusters and Grids, you will
often find the terms used
interchangeably.

A scalable storage architecture
The goal for storage in a Linux compute
cluster can be succinctly framed as the
answer to the question “Why can’t my
storage scale as easily as my compute
nodes?” Answering that seemingly
simple question defines the issues and
requirements in providing a scalable
storage solution for Linux compute
clusters.

The storage network of choice for Linux
compute clusters is TCP/IP and Ethernet.
Ubiquitous, high-speed, existing
infrastructures can form the basis for data
sharing in the compute cluster. NFS is
well suited for Linux compute clusters
since it enables the use of commodity
networking.

From a feature standpoint there are
several key factors to be addressed by a
storage solution.

First is the requirement for data sharing.
To enable cluster computing data must
be accessible by all compute clients
(application servers). Clearly this can be
achieved with a distributed file system
such as NFS. Hidden in the data sharing
requirement is a requirement for a

uniform global (to the extent of the
cluster) name space.

Second is the requirement for data
availability. While compute nodes are
essentially “stateless” and individual
node failures are transparent to the
overall cluster availability and
performance, data access failures are not.
While relatively inexpensive (and
unreliable) x86 compute nodes are used
in a Linux cluster, highly available
storage nodes are often deployed. Disks
fail, power supplies fail. RAID and
redundant power supplies are just two of
the features required for storage in a
compute cluster. The storage nodes have
no single point of failure and are
redundantly connected to the cluster
fabric to provide continuous access even
in the face of partial network failures.

A major contributor to storage and data
availability is support for non-disruptive
upgrades, expansion and additional
storage provisioning. Additional storage
capacity is configurable on more capable
storage arrays without affecting client
(compute node) operation.

Third is the requirement for reliable
data handling. Often compute nodes are
essentially stateless. Storage nodes are
always inherently stateful, with each
node holding unique instances of
persistent state – the application’s data.
(Replication for improved availability of
shared libraries and techniques such as
remote mirroring for disaster recovery
are refinements on the basic model.)
Reliable data handling is different than
making data available. It is the property
that the data stored to a storage device is
what is later delivered back to a client.
More capable storage arrays provide
redundancy checks on the data to verify
and repair data in the face of possible
corruption.

A fourth requirement is security. While
physical security of a storage network
may be sufficient for many installations
(as is the case with most fibre channel
SANs), strong security based on
encryption technology is usually a
requirement of a TCP/IP-based
architecture today (regardless of whether
it is actually enabled or not). The IETF
mandates strong security for all new
protocols defined for the Internet
(including NFS Version 4).

The fifth requirement bears reiterating
because it is perhaps too obvious, but for
large commodity Linux clusters, in
particular, the storage solution must
support commodity TCP/IP and
Ethernet networking.

The sixth requirement is performance.
While the compute nodes are chosen
based on cost, and don’t necessarily have
to be the highest performing single node
performance available (as overall cluster
performance is achieved through sheer
numbers), storage nodes have stricter
requirements. With a 100:1 fan in or
greater of compute nodes to storage
nodes, storage nodes may be specified at
a higher performance to serve expected
overall cluster I/O bandwidth
requirements to a given storage node.
Overall storage bandwidth is scaled
horizontally as is done with the compute
nodes.

While it is obviously useful to view
scaling of the compute nodes separately
from the scaling of the storage nodes in a
cluster deployment, a refinement on the
organizational model of a compute
cluster and its associated storage is to
define (and over time refine)
provisioning additional capacity in terms
of a discrete group of compute nodes and
storage nodes. The combined set of
nodes is the additional incremental
capacity added in any expansion

operation. The node counts and ratio of
compute nodes to storage nodes in an
expansion group is application
dependent. Such a technique is useful in
managing, for example, a scalable e-mail
architecture, where adding (many)
additional users requires both additional
storage and additional compute
capabilities. Defining a group of nodes as
the basis for management and expansion
provides an opportunity to define partial
failure domains within an otherwise
uniform cluster (useful on the theory that
partial failures are more acceptable than
complete cluster outages). It is certainly
the case that care must be taken when
designing a Linux compute cluster to
avoid any single point of failure in those
components that provide “persistent
critical state” (which can arise in job
queue scheduling or the storage nodes).

Completely ignored in this paper are the
rather complex issues of data
management in the storage nodes.
Investment in the storage nodes is
usually made not only to provide highly
available data to the compute nodes, but
also to gain access to data management
technologies for backup and disaster
recovery.

Also ignored here is the trend towards
asymmetric or hierarchical approaches to
storage that is based on the premise that
not all data is of equal value. Within a
Linux compute cluster it is certainly the
case that all storage nodes need not
necessarily be equivalent in performance
(or availability) but must transparent to
the compute nodes in terms of
functionality (data access, sharing and
name space).

NFS Version 4: Features and
issues

NFS is the ubiquitous distributed file
system in all Unix environments today. It

is bundled by default with all variants of
“Unix”, including Linux. Both NFS
Versions 2 and 3 are in use today. NFS
Version 4 is the emerging variant that is
beginning to appear on more and more
platforms.

NFS is designed to be upwardly
compatible as new versions are deployed.
Interoperability is achieved by having
clients and servers supporting multiple
versions of NFS simultaneously. Clients
(in the case of a Linux cluster, the
compute nodes) negotiate with an NFS
file server (the storage node) the highest
version of NFS mutually supported. Both
clients and servers can communicate
with any version of NFS the other end
supports, and a server can be serving the
same data via Versions 2, 3 and 4
simultaneously, This is potentially useful
in support of rolling upgrades within a
cluster. Storage nodes can be upgraded to
support NFS Version 4 independently of
the compute nodes. The compute nodes
can be upgraded in a roll to enable NFS
Version 4 on a compute node by
compute node basis.

For existing deployments of NFS, NFS
Version 4 provides additional capabilities
(performance and reliability)
transparently. Other features, such as
enhanced security are enabled via
administrator control or simply through
use (as in defining Access Control Lists
on a file).

NFS supports heterogeneous file sharing.
This property of being able to access data
uniformly regardless of the client
operating system (data is usually in a
specific format which can be understood
by the application regardless of what
operating system platform it is running
on) has proven useful in implementing
application migration strategies to new
environments such as Linux. While an
application binary executing on a

particular operating system platform may
differ from another platform, its
invocation and management is usually
sufficiently similar such that a common
application data format and NFS enables
mixed operating system clusters that may
arise during a long-term migration to a
new platform. Local file systems, or
vendor specific cluster file systems, over
SAN architectures typically inhibit
migration.

An important point in the design of NFS
Version 4 is that while significant state
has been introduced to enable new
capabilities (such as delegations), the
recovery model is primarily driven by the
client and resembles the simplified error
recovery model that proved successful in
NFS Versions 2 and 3. That is, when a
server reboots clients will retry their
operations until the server comes back
on-line. For large Linux compute clusters
the “retry forever” client behaviour is
critical in support of unexpected
(recoverable) outages (the fabled
unplugging of the file server by the
cleaning crew) and in support of rolling
upgrades of file servers (new file server
software or firmware upgrades with
reboot). Such behaviour is critical in the
face of applications in which a compute
node runs a long job and the cost of
restarting that job on affected compute
nodes due to a storage failure or upgrade
begins to affect the overall cost savings
obtained from a cluster approach in the
first place.

Leases were introduced in
NFS Version 4 to solve the problem of
“lost locks” in NFS Versions 2 and 3 due
to client failures while holding a byte-
range lock. A lease bounds the lifetime
of a lock held by a client, and it is the
responsibility of a client to renew the
lease periodically for the length of the
lock. (Most lease renewals are implicit in
NFS Version 4 as a client accesses a file

while reading and writing.) Server
recovery is simple. If a server reboots,
lock recovery occurs during which time
clients holding locks reestablish them.
During this “grace period” no new lock
requests are allowed. If a client crashes,
all client locking state is lost (potentially
with unflushed data) and the server will
expire the lease on a lock allowing
access to the data by other clients. This is
obviously useful for a compute cluster
with redundant nodes. However,
practically speaking, lost data due to
client crashes probably requires some
application (or job queue scheduling)
driven recovery – though it may be as
simple as restarting a job (one compute
node’s worth of work) from scratch.

Of some concern in NFS Version 4 is the
behaviour of compute nodes when a
network partition occurs. The problem is
that from the server’s viewpoint a client
crash cannot be distinguished from a
network partition. But automatic lock
recovery on lease expiry may or may not
be the policy a particular site wants to
implement (though the alternative of
never releasing locks in the event of the
crash of one or more compute nodes is
certainly no better). The handling of
network partitions (that is, server
behaviour to clients being inaccessible
for any reason) is under discussion at this
time in the NFS community. In a Linux
compute cluster where application or job
queue management initiated recovery
simply consists of restarting a job on
available nodes, lease expiry by the
server in the face of partial network
partitions is probably appropriate.

Delegations were introduced in
NFS Version 4. A delegation is a
capability granted by the server to a
client that allows a client to aggressively
cache data and locking state in the
absence of conflicting data access. Read
sharing enables caching of shared data

libraries in a Linux cluster. Write
delegations allow a client (compute
node) to cache modified data reducing
latencies for the application and perhaps
network traffic overall. Delegations are
currently bound to a session and are
granted on OPEN of a file. A server will
recall a delegation if a conflicting request
comes in from another client. Once
recalled, the delegation cannot be
reinstated short of reopening a file. The
latter is considered a limitation to be
fixed in a minor revision on NFS Version
4. NFS Versions 2 and 3 can co-exist
with NFS Version 4 even with
delegations enabled. Access to files by
an NFS Version 2 or 3 client may result
in a recall of a delegation. The server
resolves the conflict. The net effect of
multiple version access is no disruption
to transparent data access. Delegations
are a performance optimization, not a
cache coherency mechanism. In the face
of write sharing, for example,
delegations are disabled for the file in
conflict and traditional NFS behaviour
ensues (that is, undefined in the absence
of explicit locking). Delegations depend
on the ability of the server to callback to
a client, over a different port. It is not
firewall friendly and its use in Grid
computing is problematic and this is
another area of discussion in the
community.

NFS does not (yet) define a global name
space as part of the protocol, and tools
and policies need to be introduced to
allow uniform data access. Various
client-driven technologies, such as amd
[Pendry91] or Autofs [Labiaga99],
provide the uniform global name space
for NFS required in a Linux compute
cluster. The name space is defined by
maps, accessed via a name service, that
allow clients to construct uniform views
of the data. The maps allow specification
of alternate server locations for shared
read-only libraries – these can be used to

implement read-only replicated libraries
distributed across several file servers to
eliminate hot spots. While it is true that
each node added to a cluster can be
configured with a set of static mount
points, adding new storage or
reconfiguring storage becomes
intractable without the ability to effect
global changes to 1,000’s of compute
nodes via automounter-like tools.

NFS Version 4 simplifies the definition
of the automount maps by providing a
single uniform name space per server
rather than a set of distinct export points
that need to be mounted individually by
the client. This is a small but useful
simplification particularly in the face of
large primary file server deployments as
it allows for dynamic reconfiguration of
the namespace by the server without
disturbing compute node operation.

Large Linux compute clusters have
special issues in scalability unrelated to
NFS Version 4 specifically, but bear
mentioning all the same. The total
storage for a 2,000 node Linux compute
cluster can reach 500 Terabytes, The data
will be distributed over 20 or more
storage nodes, with a compute node to
storage node ratio of 100:1. Since all
compute nodes require uniform access to
all storage in the cluster (as each
compute node is the same as any other),
start-up events like initial cluster power-
on or automatic reboot due to a site wide
power outage result in extreme transients
of activity along secondary data paths
like initial mounting of file systems.
Work has occurred in both the Linux
NFS client and NFS file servers to
gracefully handle and scale transient
conditions in large cluster deployments.

One of the primary design points of NFS
Version 4 was enabling its use over the
Internet – thereby making NFS Version 4
a candidate for a Grid file system. While

the NFS protocol itself has always been
defined to reside at a well-known port
(2049), versions prior to
NFS Version 4 required adjunct
protocols such as mount, locking and
status monitoring which were assigned
dynamic port numbers. This made NFS
difficult to deploy in the face of
firewalls. NFS Version 4 collapses the
protocols into one protocol residing at
the well-known port.

A general-purpose security framework
based on GSSAPI was introduced with
NFS Version 4. Primary interest in the
framework is the deployment of
Kerberos as a strong authenticator for file
access. For certain sensitive data
deployments, NFS Version 4 allows an
administrator to enable privacy (data
encryption) to prevent snooping on the
wire – at the cost of performance.
Security is negotiated between the client
and server. A server defines the set of
acceptable security flavors required to
access a given portion of its exported file
systems. The security framework
allowed the specification of a public key
authentication flavor to support NFS in a
wide area network, which is useful in
enabling secure Grid computing.
Unfortunately, implementation practice
has fallen behind in delivering the public
key authentication support (in favor of
private key-based Kerberos
authentication which has immediate
applicability for current NFS
installations). NFS Version 4 also
introduced a standard ACL model to be
used in conjunction with the strong
authentication capabilities. Specification
of user identities with security realm
attribution in NFS Version 4 is also
useful in Grid deployments.

Alternatives to NFS

NFS is a proven storage architecture that
is in use both for high performance

Linux database clusters and for large
Linux clusters used to deploy highly
partitionable applications. There are
alternative approaches to storage
architectures besides NFS that bear
mentioning.

Traditional clustered file systems are
typically used for highly I/O intensive
applications such as clustered databases
or file serving. By sharing block storage
in a fully symmetric architecture, they
tend to work well for medium-sized
clusters of a few tens of nodes, but tend
to fall prone to contention problems
when scaling beyond a hundred nodes.
Red Hat’s GFS is a renewed attack on
the clustered file system that is
attempting to address the scalability
issues. [Redhat]

It bears reiterating that the primary
motivation for Linux-based compute
cluster is cost. While clustered file
systems can enable Fibre Channel-based
SAN architectures in a Linux cluster,
such deployments may only make
economic sense if an existing Fibre
Channel infrastructure with spare
capacity exists. That said, it is the case
that the cost of per port connectivity for
Fibre Channel is dropping in price. As
mentioned at the start, these are
interesting times. But let’s assume that
Fibre Channel costs are an impediment.

Enter iSCSI. iSCSI is a specification for
encapsulation of the SCSI protocol over
TCP/IP (and Ethernet). [Meth03] iSCSI
is all about reducing costs of deploying a
SAN. It is essentially a replacement for
Fibre Channel SAN block storage using
commodity networking. Like NFS, iSCSI
uses commodity networking as its
underlying transport making it suitable
for use in Linux compute clusters.
However, iSCSI provides only block
level semantics and requires the use of a
clustered file system or similar

technology to provide the name space
and data sharing semantics required.

Lustre is an advanced clustered file
system for Linux which seeks to enhance
scalability by means of a more
asymmetric model in which the server
tasks of handling file metadata and
storing data are handled as two separate
clustered processes. Its main focus is
large compute clusters. [Cluster]

So, if all of the commodity Linux
compute cluster nodes contain a disk
used only for booting, and minimum disk
sizes today are 60GB – what do you do
with all that embedded unused disk
space? Google answered this when they
created the Google File System (Google
FS). [Ghemawat03] Google FS uses the
embedded disks available in the
commodity compute nodes themselves to
provide storage for a replicated and
clustered file system. Some compute
cycles of each node in the cluster are
stolen to provide a distributed, replicated,
resilient storage network. It is not
entirely clear that the technique is
generally applicable to further storage
deployments, particularly in the smaller
high performance database cluster
architectures. Google FS clearly
demonstrates a clever alternative
approach to storage architectures for a
scalable and highly available application.

CIFS, that is Windows network file
sharing, is an alternative to NFS
primarily in Windows networks. Efforts
like Samba provide Windows file sharing
capabilities in non-Windows
environments.

No paper covering topics of data sharing,
a global name space and networking can
avoid paying homage to the Andrew File
System. [Howard88] AFS defined the
basic issues and explored solutions to
secure, wide area file sharing. AFS still

sees some use and is being actively
worked on in the OpenAFS project.

Future directions and research

Unlike previous versions of NFS,
Version 4 includes support for minor
versioning to allow for small
evolutionary changes of the protocol.
NFS Version 4 is the basis for future
innovation in NFS. The development of
minor revision Version 4.1 is already
well under way, notably with a proposal
to extend the delegation model to include
directories.

There is interest in providing more robust
global name space support in future
versions or implementations of NFS.
While automounter-like techniques
driven from the client are sufficient for
local Linux compute clusters, widely
distributed compute clusters present
problems in new storage provisioning in
a local part of the cluster and advertising
the new storage to geographically remote
nodes. A global name space driven by
the servers themselves, with support
from the protocol ala AFS is a potential
area to explore. The model desired is
simply “administer locally, access
globally.”

Spinnaker Networks, later acquired by
Network Appliance, created a set of
technologies to cluster storage nodes and
present a horizontally scalable cluster
that provides a uniform clustered name
space to all clients. The storage nodes act
as general-purpose pools to hold data sets
that can be migrated or replicated
transparently to clients within the storage
cluster to support storage load balancing.
The techniques also support asymmetric
or hierarchical storage architectures
transparently. Technologies such as file
switches provide similar virtualization
and features.

NFS Version 4 has defined support for
heterogeneous transparent migration and
replication, but more work needs to be
done in defining the server features
required to support it. The feature is
expected to be enabled in future
implementations of NFS Version 4.

The current lack of a global Grid file
system means that by far the most
common method of accessing remote
data on Grid projects today is to use FTP
to download the files to local storage on
the Grid compute node. The GridNFS
project (an in-progress proposal at the
CITI research group at the University of
Michigan) aims to push those
technologies needed to adapt NFS
Version 4 to work with the Globus Grid
toolkit, commonly used by the scientific
community. By providing tools that
adapt the existing NFS Version 4 public
key authentication design to the Globus
Security Infrastructure, and developing a
global Grid namespace infrastructure, it
will allow applications to securely access
remote data without placing undue
burdens on local storage or requiring
significant rewrites of applications.

In the long term, it would be useful to
adapt NFS to scale better for the case of
large numbers of clients on remote
networks. Ideas that are currently being
explored include the on-demand creation
of remote clusters of clients that can
share both a delegation on a file and
maintain a common cache to minimize
the high latency traffic to the server.

In the mid-to-long term, local clusters
will be required to scale beyond the
current storage network bandwidth
limits. Work suggested for Parallel NFS
will go beyond current restrictions by
allowing clients and compute clusters to
perform NFS operations in parallel
(striping across the network) and interact
directly with a back-end SAN for the

tasks of reading and writing file data.
Seeking an open protocol solution for
server-client communication, several
vendors of such file systems have formed
an informal working group dedicated to
developing a minimal set of extensions to
NFS Version 4 to support such models.
Proposed extensions will allow clients to
retrieve the block maps for a given file
on the SAN. These maps may then be
used to read or write to the file using a
native block protocol such as iSCSI. In
this mode, the client interactions with the
server itself are limited to operations on
the file metadata as per the Lustre model.

Another attack on high performance
computing with NFS entails hardware
assisted networking. Offloading the task
of copying data between the operating
system's networking buffers and the
user's data buffers onto the networking
hardware itself can result in performance
gains for applications such as high
performance clustered database. The
technique of Remote DMA (RDMA) is
gaining in acceptance with work within
the IETF to produce an RDMA protocol
that uses standard TCP/IP and Ethernet.
[Mogul03] Other RDMA transports such
as Infiniband also exist – NFS/RDMA
efforts are RDMA interconnect agnostic.
Work done with DAFS, a derivative of
NFS Version 4, demonstrated the
performance gains that could be achieved
using such technology. [Talpey03]
Revision 4.1 of NFS will include
extensions that were derived from
experience with DAFS. [Callaghan02]
DAFS work suggests that the greatest
gains in performance are to be had with
application level RDMA access to data
(and complete operating system bypass
following initialization).

Acknowledgements

Approximate figures on Linux compute
cluster sizes and management and issues

arose in several private conversations
with several companies deploying such
clusters for a variety of technical
applications.

Thanks to Eric Melvin and Mike Eisler
for valuable comments on a draft of the
paper. Thanks to Skottie Miller for
illuminating conversations describing
practical experience in deploying large
Linux clusters and storage.

Further information

A (currently) good web resource is the
set of links found here:

http://www.citi.umich.edu/project
s/asci/references.html

The web page for the NFS Version 4
working group within the IETF provides
pointers to standard specifications (which
are not mentioned individually in the
bibliography) and work in progress
focused on future extensions to NFS:

http://www.ietf.org/html.charters/
nfsv4-charter.html

Information on parallel and high
performance NFS can be found at this
site:

http://www.citi.umich.edu/NEPS/
agenda.html

Bibliography

The following bibliography is not meant
to be exhaustive, but provides a starting
point for additional reading and further
investigation.

[Adamson01] Adamson, William A.,
Kendrick M. Smith. “Linux NFS Version
4: Implementation and Administration.”
OLS 2001

http://lwn.net/2001/features/OLS/pdf/pdf
/nfsv4_ols.pdf

[Callaghan02] Callaghan, Brent. “NFS
over RDMA.” Usenix FAST ’02.
http://www.citi.umich.edu/projects/rdma/
refs/callaghan-fast02.pdf

[Cluster] “Lustre: A Scalable, High-
performance File System.”
http://www.lustre.org/docs/whitepaper.p
df

[Ghemawat03] Ghemawat,, Sanjay,
Howard Gobioff, and Shun-Tak Leung,
“The Google File System.” SOSP 2003.
http://www.cs.rochester.edu/sosp2003/pa
pers/p125-ghemawat.pdf

[Howard88] Howard, J.H., M.L. Kazar,
S.G. Menees, D.A. Nichols, M.
Satyanarayanan, R.N. Sidebotham, and
M.J. West, “Scale and Performance in a
Distributed File System,” ACM
Transactions on Computer Systems 6(1).
February, 1988.
http://www-
2.cs.cmu.edu/afs/cs/project/coda/Web/do
cdir/s11.pdf

[Labiaga99] Labiaga, Ricardo.
“Enhancements to the Autofs
Automounter.” Lisa ’99.
http://www.usenix.org/publications/librar
y/proceedings/lisa99/full_papers/labiaga/
labiaga.pdf

[Meth03] Meth, Kalman Z., Julian Satran
“Design of the iSCSI Protocol.” Various
including 20 th IEEE/11 th NASA
Goddard Conference on Mass Storage
Systems and Technologies (MSS'03).
http://storageconference.org/2003/papers
/19-Meth-Design.pdf

[Mogul99] Mogul, Jeffrey C. “TCP
offload is a dumb idea whose time has
come.” Usenix HotOS IX Workshop
2003.

http://www.citi.umich.edu/projects/rdma/
refs/mogul-hotosix.pdf

[Pawlowski94] Pawlowski, B. Juszczak,
C., Staubach, P., Smith, C., Lebel, D.,
Hitz, D., “NFS Version 3 Design and
Implementation.” Proceedings of the
USENIX Summer 1994 Technical
Conference.
http://www.netapp.com/ftp/NFSv3_Rev_
3.pdf

[Pawlowski00] Pawlowski, Brian,
Spencer Shepler, Carl Beame, Brent
Callaghan, Michael Eisler, David
Noveck, David Robinson, Robert
Thurlow. “The NFS Version 4 Protocol.”
SANE Conference, NL. 2000.
http://www.nluug.nl/events/sane2000/pa
pers/pawlowski.pdf

[Pendry91] Pendry, Jan-Simon, Nick
Williams. “Amd: The 4.4 BSD
Automounter Reference Manual.”
http://docs.freebsd.org/info/amdref/amdr
ef.pdf

[Redhat] Red Hat cluster file system
technology.
http://sources.redhat.com/cluster/

[Sandberg85] Sandberg, R., D. Goldberg,
S. Kleiman, D. Walsh, B. Lyon, “Design
and Implementation of the Sun Network
Filesystem,” USENIX Conference
Proceedings, USENIX Association,
Berkeley, CA, Summer 1985.
http://citeseer.ist.psu.edu/rd/62292817%
2C577908%2C1%2C0.25%2CDownload
/http%3AqSqqSqwww.pdos.lcs.mit.eduq
Sq6.824qSqpapersqSqsandberg-nfs.pdf

[Soltis96] Soltis, Steven R., Thomas M.
Ruwart, Matthew T. O’Keefe, “The
Global File System.” NASA Storage
Conference 1996.
http://citeseer.ist.psu.edu/soltis96global.h
tml

[Talpey03] Talpey, Tom. “The Direct
Access File System (DAFS).” Usenix
FAST ’03.

http://www.citi.umich.edu/projects/rdma/
refs/DA_presentation.pdf

